Identity-Based Encryption (IBE)

- The concept (Shamir, 1984): Bob’s public key can be any arbitrary string – e.g., his name or email address (plus the date). The set-up:

 - Private key generator
 - SK
 - ID Bob
 - Proof of Identity
 - E_{ID Bob, PKG}(M)

 - SK_{ID Bob} is a function of ID_{Bob} and PKG’s secret key

 - Alice
 - SK_{ID Bob}
 - Bob
 - PKG’s secret key
 - SK_{ID Bob}
 - M

 - Sent via a secure channel

Hierarchical ID-based Encryption

- What if we have a hierarchy of PKGs rather than a single PKG?
 - Private key generation is local: Bob gets private key from his parent PKG.
 - Improves scalability (offloading computation from root).
 - Makes it easier for Bob to prove identity and get secure channel.
 - Parameters are global: Alice just gets the public key of Bob’s root PKG.
 - Bob’s lower-level PKGs have no public keys.

Security

- Attacker may be able to compromise secret keys of nodes
 - Even choose adaptively the nodes to attack
 - Note: compromising PKG means all its subtree is compromised
 - Still, a node remains secure as long as:
 - Its key was not compromised
 - None of its ancestors was compromised

Our Contribution

- Some prior solutions [GS02,BB04,W05,BBG05,…]
 - But weaker security guarantee
 - Proof of security degrades as O(q^d)
 - So proof is only meaningful for a small constant depth
 - We suggest a new construction and proof
 - Security only degrades linearly with q, independent of d
 - Meaningful also for deep hierarchies