Attacking Cryptographic Schemes Based on ‘Perturbation Polynomials’

Martin Albrecht\(^1\), Craig Gentry\(^2\), Shai Halevi\(^2\), and Jonathan Katz\(^3\)
\(^1\)Royal Holloway University, \(^2\)IBM T.J. Watson Research Center, \(^3\)University of Maryland (work done while visiting IBM)

Key Predistribution (Goal): Pre-load keying material so that (1) all nodes in a MANET of size \(n\) can compute a shared key, yet (2) compromise of some nodes will not reveal keys used by any *uncompromised* pair of nodes.

Trivial Solution: Each pair of nodes share an independent key. This requires per-node storage of \(n-1\) keys, which is prohibitive for large \(n\).

An Optimal(?) Solution: An optimal solution for the case of *information-theoretic* (i.e., perfect) security is known. Zhang et al. (MobiHoc 2007) suggest a new, more efficient approach that they claim gives *computational* security. Their approach was adapted and extended in subsequent work at PerCom 2007 and INFOCOM 2008.

The Scheme of Zhang et al.: Their basic idea is to choose a (suitable) random bivariate polynomial \(F(x,y)\) and give node \(i\) the univariate polynomial \(s_i(y) = F(i, y) + noise(y)\), where \(noise\) represents a small “perturbation polynomial”. Nodes \(i\) and \(j\) can compute \(s_i(j) \approx s_j(i)\), and from this derive a key.

The claim of Zhang et al. is that the presence of the noise makes polynomial interpolation computationally infeasible, and therefore makes the scheme resilient to an unbounded number of corruptions.

Our Results: We show several attacks that *completely break* the scheme of Zhang et al. (as well as all subsequent generalizations). Our attacks rely on efficient list decoding algorithms for error-correcting codes, and lattice-basis reduction. Our attacks case doubt on the potential validity of the “perturbation polynomial” approach to constructing cryptosystems.